skip to main content


Search for: All records

Creators/Authors contains: "Drake, Alyssa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present measurements of black hole masses and Eddington ratios (λEdd) for a sample of 38 bright (M1450< −24.4 mag) quasars at 5.8 ≲z≲ 7.5, derived from Very Large Telescope/X–shooter near–IR spectroscopy of their broad Civand Mgiiemission lines. The black hole masses (on average,MBH∼ 4.6 × 109M) and accretion rates (0.1 ≲λEdd≲ 1.0) are broadly consistent with that of similarly luminous 0.3 ≲z≲ 2.3 quasars, but there is evidence for a mild increase in the Eddington ratio abovez≳ 6. Combined with deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [CII] 158μm line from the host galaxies and VLT/MUSE investigations of the extended Lyαhalos, this study provides fundamental clues to models of the formation and growth of the first massive galaxies and black holes. Compared to local scaling relations,z≳ 5.7 black holes appear to be over-massive relative to their hosts, with accretion properties that do not change with host galaxy morphologies. Assuming that the kinematics of theT∼ 104K gas, traced by the extended Lyαhalos, are dominated by the gravitational potential of the dark matter halo, we observe a similar relation between black hole mass and circular velocity as reported forz∼ 0 galaxies. These results paint a picture where the first supermassive black holes reside in massive halos atz≳ 6 and lead the first stages of galaxy formation by rapidly growing in mass with a duty cycle of order unity. The duty cycle needs to drastically drop toward lower redshifts, while the host galaxies continue forming stars at a rate of hundreds of solar masses per year, sustained by the large reservoirs of cool gas surrounding them.

     
    more » « less
  2. Abstract Studies of rest-frame optical emission in quasars at z > 6 have historically been limited by the wavelengths accessible by ground-based telescopes. The James Webb Space Telescope (JWST) now offers the opportunity to probe this emission deep into the reionization epoch. We report the observations of eight quasars at z > 6.5 using the JWST/NIRCam Wide Field Slitless Spectroscopy as a part of the “A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE)” program. Our JWST spectra cover the quasars’ emission between rest frame ∼4100 and 5100 Å. The profiles of these quasars’ broad H β emission lines span a full width at half maximum from 3000 to 6000 km s −1 . The H β -based virial black hole (BH) masses, ranging from 0.6 to 2.1 billion solar masses, are generally consistent with their Mg ii -based BH masses. The new measurements based on the more reliable H β tracer thus confirm the existence of a billion solar-mass BHs in the reionization epoch. In the observed [O iii ] λ λ 4960,5008 doublets of these luminous quasars, broad components are more common than narrow core components (≤ 1200 km s −1 ), and only one quasar shows stronger narrow components than broad. Two quasars exhibit significantly broad and blueshifted [O iii ] emission, thought to trace galactic-scale outflows, with median velocities of −610 and −1430 km s −1 relative to the [C ii ] 158 μ m line. All eight quasars show strong optical Fe ii emission and follow the eigenvector 1 relations defined by low-redshift quasars. The entire ASPIRE program will eventually cover 25 quasars and provide a statistical sample for the studies of the BHs and quasar spectral properties. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024
  3. Abstract We present the first results from the JWST program A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE). This program represents an imaging and spectroscopic survey of 25 reionization-era quasars and their environments by utilizing the unprecedented capabilities of NIRCam Wide Field Slitless Spectroscopy (WFSS) mode. ASPIRE will deliver the largest ( ∼ 280 arcmin 2 ) galaxy redshift survey at 3–4 μ m among JWST Cycle 1 programs and provide extensive legacy values for studying the formation of the earliest supermassive black holes, the assembly of galaxies, early metal enrichment, and cosmic reionization. In this first ASPIRE paper, we report the discovery of a filamentary structure traced by the luminous quasar J0305–3150 and 10 [O iii ] emitters at z = 6.6. This structure has a 3D galaxy overdensity of δ gal = 12.6 over 637 cMpc 3 , one of the most overdense structures known in the early universe, and could eventually evolve into a massive galaxy cluster. Together with existing VLT/MUSE and ALMA observations of this field, our JWST observations reveal that J0305–3150 traces a complex environment where both UV-bright and dusty galaxies are present and indicate that the early evolution of galaxies around the quasar is not simultaneous. In addition, we discovered 31 [O iii ] emitters in this field at other redshifts, 5.3 < z < 6.7, with half of them situated at z ∼ 5.4 and 6.2. This indicates that star-forming galaxies, such as [O iii ] emitters, are generally clustered at high redshifts. These discoveries demonstrate the unparalleled redshift survey capabilities of NIRCam WFSS and the potential of the full ASPIRE survey data set. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)